Leveraging High-Dimensional Side Information for Top-N Recommendation

نویسندگان

  • Yifan Chen
  • Xiang Zhao
چکیده

Top-N recommender systems typically utilize side information to address the problem of data sparsity. As nowadays side information is growing towards high dimensionality, the performances of existing methods deteriorate in terms of both effectiveness and efficiency, which imposes a severe technical challenge. In order to take advantage of high-dimensional side information, we propose in this paper an embedded feature selection method to facilitate top-N recommendation. In particular, we propose to learn feature weights of side information, where zero-valued features are naturally filtered out. We also introduce non-negativity and sparsity to the feature weights, to facilitate feature selection and encourage low-rank structure. Two optimization problems are accordingly put forward, respectively, where the feature selection is tightly or loosely coupled with the learning procedure. Augmented Lagrange Multiplier and Alternating Direction Method are applied to efficiently solve the problems. Experiment results demonstrate the superior recommendation quality of the proposed algorithm to that of the state-of-the-art alternatives.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Discriminative Recommendation Systems with Side Information

Top-N recommendation systems are useful in many real world applications such as E-commerce platforms. Most previous methods produce top-N recommendations based on the observed user purchase or recommendation activities. Recently, it has been noticed that side information that describes the items can be produced from auxiliary sources and help to improve the performance of top-N recommendation s...

متن کامل

Semi-supervised Collaborative Ranking with Push at Top

Existing collaborative ranking based recommender systems tend to perform best when there is enough observed ratings for each user and the observation is made completely at random. Under this setting recommender systems can properly suggest a list of recommendations according to the user interests. However, when the observed ratings are extremely sparse (e.g. in the case of cold-start users wher...

متن کامل

Top-N Recommendation with Novel Rank Approximation

The importance of accurate recommender systems has been widely recognized by academia and industry. However, the recommendation quality is still rather low. Recently, a linear sparse and low-rank representation of the user-item matrix has been applied to produce Top-N recommendations. This approach uses the nuclear norm as a convex relaxation for the rank function and has achieved better recomm...

متن کامل

User Graph Regularized Pairwise Matrix Factorization for Item Recommendation

Item recommendation from implicit, positive only feedback is an emerging setup in collaborative filtering in which only one class examples are observed. In this paper, we propose a novel method, called User Graph regularized Pairwise Matrix Factorization (UGPMF), to seamlessly integrate user information into pairwise matrix factorization procedure. Due to the use of the available information on...

متن کامل

Dimensions as Virtual Items: Improving the predictive ability of top-N recommender systems

Traditionally, recommender systems for the web deal with applications that have two dimensions, users and items. Based on access data that relate these dimensions, a recommendation model can be built and used to identify a set of N items that will be of interest to a certain user. In this paper we propose a multidimensional approach, called DaVI (Dimensions as Virtual Items), that consists in i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1702.01516  شماره 

صفحات  -

تاریخ انتشار 2017